

IBI Business Members

MICROMERITICS ANALYTICAL The Particle Testing SERVICES Authority

WHAT IS BIOCHAR?

- FAQs
- Environmental Benefits of Biochar
- Biochar and Climate
- Carbon Accounting

IBI Organization Members

IBI Biochar

IBI Member Network

Member Log-III	
Join IBI	
Search the IBI Member Direc	tory
Project Profiles	
Regional Biochar Groups	
Member Bulletin Board	

IBI Programs

IBIT Tograms	
٧	Vhat is Biochar?
Ī	FAQs
	Environmental Benefits of Biochar
	Biochar and Climate
	Carbon Accounting
ı	BI Biochar Standards
5	Sustainable Biochar
E	Biochar Technology
E	Biochar and Soils
E	Biochar Carbon Offset Protocol
E	Biochar Policy
-	Sinchar Commercialization

Biochar in Emerging and Developing

Calendar

Economies

Biochar Conferences

Biochar Updates/Blog
IBI Publications
IBI Newsletter
For the Press
Biochar Bibliography
Research and Higher Education
Biochar in Schools
Community Biochar Projects
Hot Topics in Biochar

Search

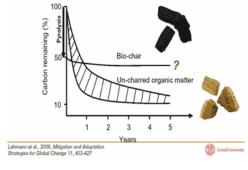
Search this site:

Biochar Is a Valuable Soil Amendment

Biochar is a solid material obtained from the carbonisation of biomass. Biochar may be added to soils with the intention to improve soil functions and to reduce emissions from biomass that would otherwise naturally degrade to greenhouse gases. Biochar also has appreciable carbon sequestration value. These properties are measurable and verifiable in a characterisation scheme, or in a carbon emission offset protocol.

This 2,000 year-old practice converts agricultural waste into a soil enhancer that can hold carbon boost food security and discourage deforestation. The process creates a fine-grained, highly porous charcoal that helps soils retain nutrients and water.

Blochar is found in soils around the world as a result of vegetation fires and historic soil management practices. Intensive study of blochar-rich dark earths in the Amazon (terra preta), has led to a wider appreciation of blochar's unique properties as a soil enhancer.


Biochar can be an important tool to increase food security and cropland diversity in areas with severely depleted soils, scarce organic resources, and inadequate water and chemical fertilizer supplies.

Biochar also improves water quality and quantity by increasing soil retention of nutrients and agrochemicals for plant and crop utilization. More nutrients stay in the soil instead of leaching into groundwater and causing politution.

Biochar is a Powerfully Simple Tool to Combat Climate Change

The carbon in blochar resists degradation and can hold carbon in soils for hundreds to thousands of years. Blochar is produced through pyrolysis or gasification — processes that heat biomass in the absence (or under reduction) of oxygen.

The essential stability of bio-char

Reduced methons of entired mensions

Reduced N,O soil control regulary

Reduced N,O soil control regulary

Reduced N,O soil control regulary

Reduced odor

In addition to creating a soil enhancer, sustainable biochar practices can produce oil and gas byproducts that can be used as fuel, providing clean, renewable energy. When the biochar is buried in the ground as a soil enhancer, the system can become "carbon negative."

Biochar and bioenergy co-production can help combat global climate change by displacing fossil fuel use and by sequestering carbon in stable soil carbon pools. It may also reduce emissions of nitrous oxide.

We can use this simple, yet powerful, technology to store 2.2 gigatons of carbon annually by 2050. It's one of the few technologies that is relatively inexpensive, widely applicable, and quickly scalable. We really can't afford not to pursue it.

© 2013 International Biochar Initiative | Privacy Policy | Terms of Use

1 of 1 6/19/13 10:29 AM